Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cerebellum ; 23(2): 401-417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36943575

RESUMO

Spinocerebellar ataxias (SCAs) are a large and diverse group of autosomal-dominant neurodegenerative diseases. No drugs have been approved for these relentlessly progressive and fatal SCAs. Our previous studies indicate that oxidative stress, neuroinflammation, and neuronal apoptosis are elevated in the SCA17 mice, which are the main therapeutic targets of hyperbaric oxygen treatment (HBOT). HBOT is considered to be an alternative and less invasive therapy for SCAs. In this study, we evaluated the HBOT (2.2 ATA for 14 days) effect and the persistence for the management of SCA17 mice and their wild-type littermates. We found HBOT attenuated the motor coordination and cognitive impairment of SCA17 mice and which persisted for about 1 month after the treatment. The results of several biochemistry and liver/kidney hematoxylin and eosin staining show the HBOT condition has no obvious toxicity in the mice. Immunostaining analyses show that the neuroprotective effect of HBOT could be through the promotion of BDNF production and the amelioration of neuroinflammation. Surprisingly, HBOT executes different effects on the male and female SCA17 mice, including the reduction of neuroinflammation and activation of CaMKII and ERK. This study suggests HBOT is a potential alternative therapeutic treatment for SCA17. Accumulated findings have revealed the similarity in disease pathomechanisms and possible therapeutic strategies in polyQ diseases; therefore, HBOT could be an optional treatment as well as the other polyQ diseases.


Assuntos
Disfunção Cognitiva , Oxigenoterapia Hiperbárica , Peptídeos , Ataxias Espinocerebelares , Camundongos , Masculino , Feminino , Animais , Oxigenoterapia Hiperbárica/métodos , Doenças Neuroinflamatórias , Disfunção Cognitiva/terapia , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/tratamento farmacológico
3.
Mol Pharm ; 18(2): 610-626, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584043

RESUMO

Polyglutamine (polyQ) diseases, such as Huntington's disease and several types of spinocerebellar ataxias, are dominantly inherited progressive neurodegenerative disorders and characterized by the presence of expanded CAG trinucleotide repeats in the respective disease locus of the patient genomes. Patients with polyQ diseases currently need to rely on symptom-relieving treatments because disease-modifying therapeutic interventions remain scarce. Many disease-modifying therapeutic agents are now under clinical testing for treating polyQ diseases, but their delivery to the brain is often too invasive (e.g., intracranial injection) or inefficient, owing to in vivo degradation and clearance by physiological barriers (e.g., oral and intravenous administration). Nanoparticles provide a feasible solution for improving drug delivery to the brain, as evidenced by an increasing number of preclinical studies that document the efficacy of nanomedicines for polyQ diseases over the past 5-6 years. In this review, we present the pathogenic mechanisms of polyQ diseases, the common animal models of polyQ diseases for evaluating the efficacy of nanomedicines, and the common administration routes for delivering nanoparticles to the brain. Next, we summarize the recent preclinical applications of nanomedicines for treating polyQ diseases and improving neurological conditions in vivo, placing emphasis on antisense oligonucleotides, small peptide inhibitors, and small molecules as the disease-modifying agents. We conclude with our perspectives of the burgeoning field of "nanomedicines for polyQ diseases", including the use of inorganic nanoparticles and potential drugs as next-generation nanomedicines, development of higher-order animal models of polyQ diseases, and importance of "brain-nano" interactions.


Assuntos
Portadores de Fármacos/química , Doença de Huntington/tratamento farmacológico , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Peptídeos/antagonistas & inibidores , Ataxias Espinocerebelares/tratamento farmacológico , Administração Intranasal , Administração Oral , Animais , Animais Geneticamente Modificados , Disponibilidade Biológica , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Loci Gênicos/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Injeções Intraperitoneais , Injeções Intravenosas , Injeções Intraventriculares , Injeções Espinhais , Fármacos Neuroprotetores/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacocinética , Peptídeos/genética , Peptídeos/metabolismo , Permeabilidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Distribuição Tecidual , Expansão das Repetições de Trinucleotídeos
4.
Parkinsonism Relat Disord ; 63: 191-194, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30862453

RESUMO

INTRODUCTION: Spinocerebellar Ataxia 38 (SCA38) is caused by ELOVL5 gene mutation, with significant reduction of serum docosahexaenoic acid (DHA) levels. DHA supplementation has been proven effective at short-term follow-up. In the present paper, we evaluated long-term safety and efficacy of 600 mg/day oral DHA in SCA38 by a 2-year open label extension study. METHODS: Nine SCA38 patients underwent standardised clinical assessment at 62 (T1), 82 (T2) and 104 (T3) weeks, and compared to pre-treatment scores (T0). Brain 18-Fluorodeoxyglucose Positron Emission Tomography and electroneurography were performed at T0 and T3. RESULTS: We found a significant maintenance of clinical symptom improvement at each follow-up time-point (p < 0.001) as compared to T0, a sustained increase of cerebellar metabolism at T3 as compared to T0 (p = 0.013), and no worsening of neurophysiological parameters. No side effect was recorded. CONCLUSIONS: Long-term DHA supplementation is an eligible treatment for SCA38.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/fisiopatologia , Adulto , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/efeitos adversos , Estimulação Elétrica , Eletromiografia , Elongases de Ácidos Graxos/genética , Feminino , Fluordesoxiglucose F18 , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética
5.
Aging (Albany NY) ; 11(3): 986-1007, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760647

RESUMO

Spinocerebellar ataxia (SCA) type 17 is an autosomal dominant ataxia caused by expanded polyglutamine (polyQ) tract in the TATA-box binding protein (TBP). Substantial studies have shown involvement of compromised mitochondria biogenesis regulator peroxisome proliferator-activated receptor gamma-coactivator 1 alpha (PGC-1α), nuclear factor erythroid 2-related factor 2 (NRF2), nuclear factor-Y subunit A (NFYA), and their downstream target genes in the pathogenesis of polyQ-expansion diseases. The extracts of Paeonia lactiflora (P. lactiflora) and Glycyrrhiza uralensis (G. uralensis) have long been used as a Chinese herbal medicine (CHM). Shaoyao Gancao Tang (SG-Tang) is a formulated CHM made of P. lactiflora and G. uralensis at a 1:1 ratio. In the present study, we demonstrated the aggregate-inhibitory and anti-oxidative effect of SG-Tang in 293 TBP/Q79 cells. We then showed that SG-Tang reduced the aggregates and ameliorated the neurite outgrowth deficits in TBP/Q79 SH-SY5Y cells. SG-Tang upregulated expression levels of NFYA, PGC-1α, NRF2, and their downstream target genes in TBP/Q79 SH-SY5Y cells. Knock down of NFYA, PGC-1α, and NRF2 attenuated the neurite outgrowth promoting effect of SG-Tang on TBP/Q79 SH-SY5Y cells. Furthermore, SG-Tang inhibited aggregation and rescued motor-deficits in SCA17 mouse model. The study results suggest the potential of SG-Tang in treating SCA17 and probable other polyQ diseases.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ataxias Espinocerebelares/tratamento farmacológico , Animais , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Técnicas de Silenciamento de Genes , Glycyrrhiza uralensis , Humanos , Camundongos Transgênicos , Terapia de Alvo Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Paeonia , Peptídeos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fitoterapia , Ataxias Espinocerebelares/metabolismo , Proteína de Ligação a TATA-Box/efeitos dos fármacos , Proteína de Ligação a TATA-Box/metabolismo
6.
Ann Neurol ; 82(4): 615-621, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28976605

RESUMO

OBJECTIVE: Spinocerebellar ataxia 38 (SCA38) is caused by mutations in the ELOVL5 gene, which encodes an elongase involved in the synthesis of polyunsaturated fatty acids, including docosahexaenoic acid (DHA). As a consequence, DHA is significantly reduced in the serum of SCA38 subjects. In the present study, we evaluated the safety of DHA supplementation, its efficacy for clinical symptoms, and changes of brain functional imaging in SCA38 patients. METHODS: We enrolled 10 SCA38 patients, and carried out a double-blind randomized placebo-controlled study for 16 weeks, followed by an open-label study with overall 40-week DHA treatment. At baseline and at follow-up visit, patients underwent standardized clinical assessment, brain 18-fluorodeoxyglucose positron emission tomography, electroneurography, and ELOVL5 expression analysis. RESULTS: After 16 weeks, we showed a significant pre-post clinical improvement in the DHA group versus placebo, using the Scale for the Assessment and Rating of Ataxia (SARA; mean difference [MD] = +2.70, 95% confidence interval [CI] = +0.13 to + 5.27, p = 0.042). At 40-week treatment, clinical improvement was found significant by both SARA (MD = +2.2, 95% CI = +0.93 to + 3.46, p = 0.008) and International Cooperative Ataxia Rating Scale (MD = +3.8, 95% CI = +1.39 to + 6.41, p = 0.02) scores; clinical data were corroborated by significant improvement of cerebellar hypometabolism (statistical parametric mapping analyses, false discovery rate corrected). We also showed a decreased expression of ELOVL5 in patients' blood at 40 weeks as compared to baseline. No side effect was recorded. INTERPRETATION: DHA supplementation is a safe and effective treatment for SCA38, showing an improvement of clinical symptoms and cerebellar hypometabolism. Ann Neurol 2017;82:615-621.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ataxias Espinocerebelares/tratamento farmacológico , Adulto , Ataxinas/genética , Encéfalo/diagnóstico por imagem , Método Duplo-Cego , Eletromiografia , Feminino , Fluordesoxiglucose F18/farmacocinética , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Avaliação de Resultados em Cuidados de Saúde , Tomografia por Emissão de Pósitrons , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Resultado do Tratamento
7.
Hum Mol Genet ; 25(18): 4021-4040, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27466200

RESUMO

A polyglutamine expansion within the ataxin-1 protein (ATXN1) underlies spinocerebellar ataxia type-1 (SCA1), a neurological disorder mainly characterized by ataxia and cerebellar deficits. In SCA1, both loss and gain of ATXN1 biological functions contribute to cerebellar pathogenesis. However, the critical ATXN1 functions and pathways involved remain unclear. To further investigate the early signalling pathways regulated by ATXN1, we performed an unbiased proteomic study of the Atxn1-KO 5-week-old mice cerebellum. Here, we show that lack of ATXN1 expression induces early alterations in proteins involved in glycolysis [pyruvate kinase, muscle, isoform 1 protein (PKM-i1), citrate synthase (CS), glycerol-3-phosphate dehydrogenase 2 (GPD2), glucose-6-phosphate isomerase (GPI), alpha -: enolase (ENO1)], ATP synthesis [CS, Succinate dehydrogenase complex,subunit A (SDHA), ATP synthase subunit d, mitochondrial (ATP5H)] and oxidative stress [peroxiredoxin-6 (PRDX6), aldehyde dehydrogenase family 1, subfamily A1, 10-formyltetrahydrofolate dehydrogenase]. In the SCA1 mice, several of these proteins (PKM-i1, ATP5H, PRDX6, proteome subunit A6) were down-regulated and ATP levels decreased. The underlying mechanism does not involve modulation of mitochondrial biogenesis, but dysregulation of the activity of the metabolic regulators glycogen synthase kinase 3B (GSK3ß), decreased in Atxn1-KO and increased in SCA1 mice, and mechanistic target of rapamycin (serine/threonine kinase) (mTOR), unchanged in the Atxn1-KO and decreased in SCA1 mice cerebellum before the onset of ataxic symptoms. Pharmacological inhibition of GSK3ß and activation of mTOR in a SCA1 cell model ameliorated identified ATXN1-regulated metabolic proteome and ATP alterations. Taken together, these results point to an early role of ATXN1 in the regulation of bioenergetics homeostasis in the mouse cerebellum. Moreover, data suggest GSK3ß and mTOR pathways modulate this ATXN1 function in SCA1 pathogenesis that could be targeted therapeutically prior to the onset of disease symptoms in SCA1 and other pathologies involving dysregulation of ATXN1 functions.


Assuntos
Ataxina-1/genética , Glicogênio Sintase Quinase 3 beta/genética , Ataxias Espinocerebelares/genética , Serina-Treonina Quinases TOR/genética , Trifosfato de Adenosina/metabolismo , Animais , Ataxina-1/biossíntese , Cerebelo/metabolismo , Cerebelo/patologia , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/biossíntese , Glicólise/genética , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Peptídeos/genética , Proteoma/biossíntese , Proteoma/genética , Transdução de Sinais , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/patologia , Serina-Treonina Quinases TOR/biossíntese
8.
Free Radic Biol Med ; 97: 427-440, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27394174

RESUMO

Spinocerebellar ataxia type 1 (SCA1), due to an unstable polyglutamine expansion within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), decreasing motor coordination and causing death within 10-15 years of diagnosis. Currently, there are no therapies available to slow down disease progression. As secondary cellular impairments contributing to SCA1 progression are poorly understood, here, we focused on identifying those processes by performing a PC specific proteome profiling of Sca1(154Q/2Q) mice at a symptomatic stage. Mass spectrometry analysis revealed prominent alterations in mitochondrial proteins. Immunohistochemical and serial block-face scanning electron microscopy analyses confirmed that PCs underwent age-dependent alterations in mitochondrial morphology. Moreover, colorimetric assays demonstrated impairment of the electron transport chain complexes (ETC) and decrease in ATPase activity. Subsequently, we examined whether the mitochondria-targeted antioxidant MitoQ could restore mitochondrial dysfunction and prevent SCA1-associated pathology in Sca1(154Q/2Q) mice. MitoQ treatment both presymptomatically and when symptoms were evident ameliorated mitochondrial morphology and restored the activities of the ETC complexes. Notably, MitoQ slowed down the appearance of SCA1-linked neuropathology such as lack of motor coordination as well as prevented oxidative stress-induced DNA damage and PC loss. Our work identifies a central role for mitochondria in PC degeneration in SCA1 and provides evidence for the supportive use of mitochondria-targeted therapeutics in slowing down disease progression.


Assuntos
Antioxidantes/farmacologia , Compostos Organofosforados/farmacologia , Ataxias Espinocerebelares/tratamento farmacológico , Ubiquinona/análogos & derivados , Animais , Antioxidantes/uso terapêutico , Dano ao DNA , DNA Mitocondrial/genética , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Compostos Organofosforados/uso terapêutico , Estresse Oxidativo , Proteoma/metabolismo , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
9.
Drug Des Devel Ther ; 10: 723-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26937174

RESUMO

Spinocerebellar ataxia type 17 (SCA 17) is a polyglutamine disease caused by the expansion of CAG/CAA repeats in the TATA box-binding protein (TBP) gene. The Ginkgo biloba extract, EGb 761, contains flavonoids and terpenoids with a potential use for the treatment of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The neuroprotective effects of EGb 761 are obvious, but whether the EGb 761 has therapeutic effects in SCA 17 is still unclear. To manage our issues, we have generated TBP/79Q-expressing SH-SY5Y cells and SCA 17 transgenic mice with the mutant hTBP gene. In in vitro experiment, we observed that the EGb 761 treatment decreased the amount of sodium dodecyl sulfate-insoluble proteins in the TBP/79Q-expressing SH-SY5Y cells. We further found that the EGb 761 treatment could inhibit excitotoxicity and calcium influx and reduce the expression of apoptotic markers in glutamate-treated SH-SY5Y neuroblastoma cells. In in vivo experiment, we observed that the EGb 761 treatment (100 mg/kg intraperitoneal injection per day) could relieve the motor deficiencies of the SCA 17 transgenic mice. Our findings provide evidence that the EGb 761 treatment can be a remedy for SCA 17 via suppressing excitotoxicity and apoptosis in SCA 17 cell and animal models. Therefore, we suggest that EGb 761 may be a potential therapeutic agent for treating SCA 17.


Assuntos
Extratos Vegetais/uso terapêutico , Ataxias Espinocerebelares/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ginkgo biloba , Ácido Glutâmico/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia
10.
Brain Res ; 1639: 132-48, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26972528

RESUMO

Spinocerebellar ataxia type 17 (SCA17), an autosomal dominant cerebellar ataxia, is a devastating, incurable disease caused by the polyglutamine (polyQ) expansion of transcription factor TATA binding protein (TBP). The polyQ expansion causes misfolding and aggregation of the mutant TBP, further leading to cytotoxicity and cell death. The well-recognized prodromal phase in many forms of neurodegeneration suggests a prolonged period of partial neuronal dysfunction prior to cell loss that may be amenable to therapeutic intervention. The objective of this study was to assess the effects and molecular mechanisms of granulocyte-colony stimulating factor (G-CSF) therapy during the pre-symptomatic stage in SCA17 mice. Treatment with G-CSF at the pre-symptomatic stage improved the motor coordination of SCA17 mice and reduced the cell loss, insoluble mutant TBP protein, and vacuole formation in the Purkinje neurons of these mice. The neuroprotective effects of G-CSF may be produced by increases in Hsp70, Beclin-1, LC3-II and the p-ERK survival pathway. Upregulation of chaperone and autophagy levels further enhances the clearance of mutant protein aggregation, slowing the progression of pathology in SCA17 mice. Therefore, we showed that the early intervention of G-CSF has a neuroprotective effect, delaying the progression of SCA17 in mutant mice via increases in the levels of chaperone expression and autophagy.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Fármacos Neuroprotetores/farmacologia , Sintomas Prodrômicos , Ataxias Espinocerebelares/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Células de Purkinje/fisiologia , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia
11.
Nat. hum ; 36(10)oct. 2011. tab, graf
Artigo em Inglês | CUMED | ID: cum-60088

RESUMO

Cuban patients with Spinocerebellar Ataxia type 2 (SCA2) have reduced concentrations of zinc in serum and cerebrospinal fluid (CSF). To assess the effect and safety of zinc supplementation, 36 Cuban SCA2 patients were randomly assigned to receive daily either 50 mg ZnSO4 or placebo, together with neurorehabilitation therapy in a randomized, double-blind, placebo-controlled clinical trial during 6 months. Outcome measures included the changes of zinc levels in CSF and serum, ataxia score, oxidative stress and saccadic eye movements. At the end of the study, the Zinc-treated group showed: (i) a significant increase of the Zn levels in the CSF, (ii) mild decrease in the ataxia scale subscores for gait, posture, stance and dysdiadochocinesia (iii) reduction of lipids oxidative damage, and (iv) reduction of saccadic latency when compared with the placebo group. The treatment was safe and well tolerated by all subjects. This study demonstrated the efficacy and safety of Zn supplementation, combined with neurorehabilitation for SCA2 patients and therefore it may encourage further studies on the clinical effect of zinc supplementation in SCA2 based in the conduction of future clinical trials with higher number of subjects(AU)


Assuntos
Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Suplementos Nutricionais , Placebos , Ataxias Espinocerebelares/sangue , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/fisiopatologia , Sulfato de Zinco/administração & dosagem , Sulfato de Zinco/uso terapêutico
12.
Neurochem Res ; 36(10): 1793-800, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21562746

RESUMO

Cuban patients with Spinocerebellar Ataxia type 2 (SCA2) have reduced concentrations of zinc in serum and cerebrospinal fluid (CSF). To assess the effect and safety of zinc supplementation, 36 Cuban SCA2 patients were randomly assigned to receive daily either 50 mg ZnSO(4) or placebo, together with neurorehabilitation therapy in a randomized, double-blind, placebo-controlled clinical trial during 6 months. Outcome measures included the changes of zinc levels in CSF and serum, ataxia score, oxidative stress and saccadic eye movements. At the end of the study, the Zinc-treated group showed: (i) a significant increase of the Zn levels in the CSF, (ii) mild decrease in the ataxia scale subscores for gait, posture, stance and dysdiadochocinesia (iii) reduction of lipid's oxidative damage, and (iv) reduction of saccadic latency when compared with the placebo group. The treatment was safe and well tolerated by all subjects. This study demonstrated the efficacy and safety of Zn supplementation, combined with neurorehabilitation for SCA2 patients and therefore it may encourage further studies on the clinical effect of zinc supplementation in SCA2 based in the conduction of future clinical trials with higher number of subjects.


Assuntos
Suplementos Nutricionais , Placebos , Ataxias Espinocerebelares/tratamento farmacológico , Sulfato de Zinco/administração & dosagem , Sulfato de Zinco/uso terapêutico , Adolescente , Adulto , Catalase/sangue , Cuba , Método Duplo-Cego , Humanos , Malondialdeído/sangue , Pessoa de Meia-Idade , Movimentos Sacádicos/fisiologia , Ataxias Espinocerebelares/fisiopatologia , Ataxias Espinocerebelares/reabilitação , Superóxido Dismutase/sangue , Resultado do Tratamento , Adulto Jovem , Zinco/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA